0=-16x^2+540

Simple and best practice solution for 0=-16x^2+540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+540 equation:



0=-16x^2+540
We move all terms to the left:
0-(-16x^2+540)=0
We add all the numbers together, and all the variables
-(-16x^2+540)=0
We get rid of parentheses
16x^2-540=0
a = 16; b = 0; c = -540;
Δ = b2-4ac
Δ = 02-4·16·(-540)
Δ = 34560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34560}=\sqrt{2304*15}=\sqrt{2304}*\sqrt{15}=48\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{15}}{2*16}=\frac{0-48\sqrt{15}}{32} =-\frac{48\sqrt{15}}{32} =-\frac{3\sqrt{15}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{15}}{2*16}=\frac{0+48\sqrt{15}}{32} =\frac{48\sqrt{15}}{32} =\frac{3\sqrt{15}}{2} $

See similar equations:

| 7y^2+8=-y | | -31+d=-31 | | 2(x+4)+3x=24-3x | | 25x=1449 | | 3=-6y^2-5y | | Y=-0.2x^2+10x+650 | | 2/5x-9=-17 | | 6^{x}+8=57 | | 6u/7=-18 | | (6x-8)(2x+12)=0 | | 40x-100=22.5x+180 | | 3x-6+14=5x-2 | | 2/3(n-3)=16 | | 4x+7+x-12=180 | | 16x+80=26x | | 7-6x+13=1-2x+7 | | 4n+5=6n-8 | | 5/12=m/132 | | 2(x+2)+2(x+6)=2(2x-2)+2(x=4) | | 12/5=168/m | | 2/3x+7=-18 | | 3x+x+14=2x+30 | | -2p+160=140 | | 33=1-8y | | 5x+18=7x-30 | | 3x+7+9=x+2 | | 3x+22=5(x-8) | | 300+7b=140 | | 5b+8=3b+4 | | 11x-7=9x-1 | | 0.9/3.3=0.6/m | | 4x+120=140 |

Equations solver categories